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Active Measuring in Uncertain Environments MERLIJN KRALE

Abstract

Partial observability and model uncertainty are common problems in sequential decision-making. First, we consider
partial observability in active measure contexts, which provide direct control over when and how the agents may
gather information. Second, we employ model uncertainty to represent imprecise transition functions. We extend
Markov decision processes (MDPs) to uncertain action-contingent noiselessly observable MDPs (uACNO-MDPs)
that capture both types of uncertainty. We present an active-measure heuristic to solve uACNO-MDPs efficiently. We
show how model uncertainty can, counterintuitively, lead the optimal policy to take fewer measurements and propose
a method to counteract this behavior while only incurring a bounded additional cost. We empirically compare our
methods to a number of baselines and show their superior scalability and performance.
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1 Introduction

Drone

RequestMeasurement
Disturbance

Planned Path

MoCap

Figure 1: Visualisation of our motivating example. A drone has to plan a path through a corridor with (wind) distur-
bances, for which it can request measurements from a motion capture (MoCap) system.

1.1 Motivating Example

Suppose you are the manager of a warehouse that makes use of flying drones to move wares from one spot to another.
The drones have the equipment and software required for low-level motion control, but to save on weight, the drones
have no sensors for measuring their absolute velocity and speed directly. These quantities can be predicted from their
low-level sensor data, but this might lead to inaccuracies. Alternatively, the drones can query an external motion
capture system to directly measure their position and velocity. However, this external system has a limited capacity,
so ideally, drones only ask for a measurement if their own predictions contain too much uncertainty for safe planning.

In one section of the warehouse, drones need to fly through a corridor with a corner, as visualized in Figure 1. The
corridor has big open windows, which leads to hard-to-predict wind disturbances that can alter the path of the drone.
How do we make sure the drones fly through this hallway as safely as possible without overloading the motion capture
system with measurement requests?

1.2 Uncertain Active Measuring

The motivating example given above can be described as an uncertain active measuring problem. In this context,
uncertainty refers to a problem where the dynamics of the system are not fully known but can only be approximated.
Such problems may occur in settings with hard-to-predict disturbances to otherwise fully known dynamics (such as
above or in Jiang et al. [2022]). Alternatively, settings where model dynamics need to be inferred from finite data often
include similar model uncertainty in the form of confidence bounds [Xiao et al., 2012, Suilen et al., 2022].

On the other hand, active measure problems describe settings where agents have direct control over their observations,
these have some related cost. Although not much research on active measure models exists, they could be used for
robotics problems with expensive-to-use sensors (such as above or in Yin et al. [2020]), or predictive maintenance
problems where the cost of an inspection needs to be weighed against the risk of failures [Jimenez-Roa et al., 2022].

Both uncertain and active measurement models have previously been studied separately, but no prior works exist on
specifically combining the two. Instead, uncertain active measuring environments could be modeled using frameworks
for more general uncertain partially observable settings, which include any setting in which agents do not have full
information about their current state. However, although some methods exist to solve these environments, they either
scale poorly or are particularly ill-suited for active-measure environments.

1.3 Problem Statement

This thesis focuses on uncertain active measuring environments, with the following goals:

1. Modelling : define a framework to model systems with uncertainty in both the system dynamics and current
state, where the latter can be resolved through measurements.

2. Model solving: find a method of solving such models, i.e. find strategies that perform well while taking into
account the cost of measuring for all possible system dynamics.
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1.4 Overview

The remainder of this section gives a high-level overview of how we aim to achieve these goals in this thesis, with
headings corresponding to the different sections:

Background: Modeling and Solving Uncertainty For our first goal, we fortunately find that methods for modeling
both system- and state uncertainty already exist. The first type is captured by Uncertain Markov decision processes
(uMDPs), an extension of generic Markov decision processes where the transition probabilities are replaced by un-
certainty sets. The second type can be captured by partially observable Markov decision processes (POMDPs), in
which we assume the exact state is unknown but can be inferred from current and previous observations. Of particular
interest for us is a subclass of POMDPs, known as action-contigent noiselessly observable Markov decision processes
(ACNO-MDPs), in which we only receive observations when taking a specific measuring action. Lastly, uncertain
POMDPs (uPOMDPs) combine the model uncertainty from uMDPs and partial observability of POMDPs. We discuss
all these frameworks, as well as methods of solving them, with a focus on details relevant to our own use case.

uACNO-MDPs For our first goal of modeling uncertainty with measuring actions, we define uncertain ACNO-
MDPs (uACNO-MDPs) using definitions and properties of the frameworks introduced in the background section.
Through a number of examples, we intuitively show a number of interesting properties uACNO-MDPs possess, which
we compare with those of (more general) uncertain POMDPs. To make uACNO-MDPs more concrete, we implement
a simplified version of the motivating example from this section as an uACNO-MDP.

Act-then-measure in uACNO-MDPs For our second goal of model solving, we start our search by looking for
robust policies, which are policies that optimize for the worst-case transition probabilities within the given uncertainty
set. Based on work from my research internship, we introduce robust act-then-measure ( RATM) as an algorithm
to compute approximate policies for uACNO-MDPs. This method makes the assumption that for choosing non-
measuring actions, state uncertainty only needs to be considered for the current step. We consider how this assumption
translates to an uncertain setting, then introduce uncertain measuring value to determine when to take measurements.

Measurement Leniency One downside of our method of finding robust strategies is that they can be very conserva-
tive in the number of measurements they take. Even though this behavior is optimal in the worst case, we show that
making more measurements might increase performance for other probabilities within the uncertainty set with only
limited cost in the worst case. In an effort to find policies that do not have this drawback, we define the concept of
measurement leniency. Intuitively, measurement-lenient policies allow for non-robust measurements to be made if this
could yield better performance in another (average-case) version of the model.

Empirical Analysis To evaluate our algorithms, we test the performance of both the fully robust and measurement-
lenient versions of our algorithm on a number of test environments against a number of baselines. For measurement
leniency, we consider a number of different variants which measure according to an optimistic, pessimistic, or average-
case version of the uncertain model. To start, we use toy-example environments to show that our robust algorithms are
able to correctly determine worst-case transition probabilities in a partially observable setting, as well as the measuring
behavior of our measurement-lenient algorithms. Lastly, we test scalability in the larger uACNO-MDP environment
inspired by our motivating example

Discussion and Conclusion To conclude, we discuss a number of limitations of our work, summarize our findings,
and mention possible future research directions.
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Figure 2: Visualisation of interactions with an MDP environment.

2 Background: Modeling & Solving Uncertainty

This section contains an overview of a number of modeling frameworks, which we will use as a basis for the
uACNO-MDP framework defined in the next section. The goal is to give an intuitive understanding of both the
workings and use case for these models, as well as provide more detailed background knowledge on topics that will
be relevant in later sections. References to more in-depth analyses are provided for each framework. Throughout this
thesis, we will only consider infinite-horizon and discounted models unless explicitly specified otherwise.

Basic Notation

Here, let us briefly define some basic notation as used throughout this thesis. We denote ∆(X) as the set of probability
distributions over elements of set X . Given a function F : X → ∆(Y ) and elements x ∈ X, y ∈ Y , F (·|x) denotes
the conditional probability distribution over Y given x, F (y|x) the probability of element y given x, and y ∼ F (x)
an element y randomly sampled from F (x). We denote the δx,y as the Kronecker delta function, which returns 1
if x and y are equal and 0 otherwise. For notational convenience we overload all function F : ∆(X) → Y with
F : X → Y such that F (x) = F

(
{δx,x′ |x′ ∈ X}

)
. For sequential decision-making processes, we denote xt as the

value of variable x at time-step t.

2.1 Markov Decision Processes

Markov decision processes (MDPs) are a commonly used framework for modeling sequential decision-making prob-
lems [Puterman, 1994]. They are defined as follows:

Definition 1. A Markov decision process (MDP) is given by a tuple M = (S,A, P,R, γ), with:
• S the set of states;
• A the set of actions;
• P : S ×A→ ∆(S) the transition function;
• R : S ×A→ R the reward function: and
• γ ∈ [0, 1] the discount factor.

Following Kaelbling et al. [1998], interactions of an agent with an MDP can be visualized as in Figure 2. Starting
in some state s0, at each time-step t, the agent chooses to take an action at ∈ A. The environment then changes its
current state st ∈ S according to st+1 ∼ P (·|st, at), and returns this new state and a reward rt = R(st, at) to the
agent. The goal of the agent is to maximize its expected discounted returns, given as E[

∑
t γ

trt].

Solving MDPs

We notice that MDPs are Markovian, meaning that probabilities of events at any time t = τ only depend on properties
at time t = τ − 1. Thus, to maximize expected returns, agents only need to consider the current state of the MDP,
which means optimal behavior can be captured by a memoryless policy (or strategy) of the form:

π : S → ∆(A). (1)

For any policy π, we define a value function V (π, s) as the expected return for following π from state s, which can
recursively be defined as follows:
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V (π, s) = R(s, π(s)) + γ
∑
s′∈S

P (s′|s, π(s))V (π, s′) (2)

With the value function as a way of determining how ‘good’ a given policy is, we define an optimal policy π∗ as a
policy with the highest possible value for the initial state. One way of finding such a policy is through value iteration,
as outlined in Algorithm 1. This method uses dynamic programming to approximate both the optimal value function
V ∗ and policy π∗ iteratively until some convergence condition is met (e.g., the value function changes with less than
some ϵ at each iteration for all states) [Kochenderfer et al., 2015].

Algorithm 1 VALUE ITERATION

Initialise V ∗

while Convergence condition not met do
for s ∈ S do

V ∗(s) = maxa∈A[R(s, a) + γ
∑

s′∈S P (s′|s, a)V ∗(s′)]
π∗(s) = argmaxa∈A[R(s, a) + γ

∑
s′∈S P (s′|s, a)V ∗(s′)]

return V ∗, π∗

As an alternative to value iteration, Q-learning [Watkins and Dayan, 1992] iteratively approximates the Q-value func-
tion Q : S × A → R, which gives the optimal expected return after a given state-action pair. An implementation is
shown in Algorithm 2. Instead of iteratively updating all states (such as in value iteration), Q-learning instead traverses
the environment via its best estimation of π∗ and updates only the states it visits. Despite this, like value iteration,
Q-learning still provably converges to optimal policies [Watkins and Dayan, 1992]. Moreover, we notice Q-learning
is model-free, meaning it does not explicitly keep track of the model but bases its updates solely on the current state
and reward. Because of this, it can be used in reinforcement learning (RL) settings where the model dynamics are
unknown.

Algorithm 2 Q-LEARNING

Initialise Q, pick learning rate α;
while Q not converged do

t = 0;
while episode not done do

π(st) = argmaxa∈A Q(st, a);
Pick at = π(st) with probability 1−ϵ, and a random action at ∈ A otherwise;
Perform action at, receive rt, st+1;
Q(st, at)← (1− α)Q(st, at) + α

(
rt + γQ(st+1, π(st+1)

)
;

return V ∗, π∗
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R=1
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Figure 3: An example of an approximated MDP where the optimal behavior is ‘risky.’ We assume ϵ > 0, and
p̂−, p̂+ the transition probabilities that approximate some real probabilities p−, p+. For the approximated transition
probabilities, action b is optimal, yielding an expected return of 1 instead of 1−ϵ. However, this behavior is suboptimal
for even small errors in p̂−, while gaining only an extra return ϵ.

2.2 Model Uncertainty

Markov decision processes are an often-used framework to model real-life situations but have the downside that they
require full knowledge of the modeled system dynamics, i.e. an accurate transition function. In reality, though, the
dynamics of a system might only be known approximately. Errors in the approximations can easily lead to policies
that take unnecessary risks, as can be seen by the example in Figure 3.

Uncertain Markov decision processes (uMDPs) [Nilim and Ghaoui, 2005] are a framework to express uncertainty in
the transition function explicitly, dealing with the problem outlined above. They are defined as follows:

Definition 2. An uncertain Markov decision processes (uMDP) is given by a tuple Mu = (S,A,U , R,P, γ),
with:

• S,A,R, γ as defined for generic MDPs;
• U the uncertainty set: and
• P : S ×A× S → U the uncertain transition function.

Interactions with a uMDP can be viewed as a two-player (adversarial) game between an agent and ‘nature.’ Starting
in the initial state s0, at each timestep t, the agent chooses an action at according to its policy π. Then, nature chooses
transition probabilities P (·|st, at) such that ∀s′ : P (s′|st, at) ∈ P(s′|st, at) and

∑
s′ P (s′|st, at) = 1. After this,

the model transitions as it would in a generic MDP: the environment transitions to a new state st+1 ∼ P (·|st, at),
and the agent observes st+1 and receives reward rt. As for MDPs, the goal of the agent is to maximize their expected
discounted return.

We note that our definition as a two-player game implicitly assumes nature can choose any transition probability
independently of past or future choices. Such a model is referred to as ((s, a)-)rectangular [Wiesemann et al., 2013]
and dynamic [Nilim and Ghaoui, 2005], with the former meaning probabilities for different state-action pairs are
independent, and the latter that probabilities for the same state-action pair at different times are independent. This
assumption is not always realistic for real-life applications but massively decreases the complexity of the model and is
thus common in literature. Likewise, we’ll assume both s,a-rectangular and dynamic models for all upcoming model
definitions.

Robustness

The behavior of nature is commonly assumed to be adversarial, meaning its goal is to minimize the agent’s expected
return. For infinite-horizon rectangular uMDPs, this behavior simplifies our problem to solving a generic MDP that
captures the worst case, which we refer to as the worst-case MDP 1 which we denote as RMDP. We can define the
worst-case value function VR and transition function PR for this MDP as follows:

V ∗
R(s) = max

a∈A
R(s, a) + γ

∑
s′∈S

PR(s
′|s, a)V ∗

R(s
′), (3)

PR(s
′|s, a) = arg inf

p∈P(s′|,a,s)
pVR(s

′)−
∑

s′′∈S/s′

PR(s
′′|s, a)VR(s

′′), s.t.
∑
s′′∈S

PR(s
′′|s, a) = 1 (4)

We notice finding V ∗
R requires solving a nested optimization problem, i.e. maximizing a over the minimum of the

uncertainty set. To keep this computationally tractable, we often add restrictions on the uncertainty set that allow us to
solve this optimization problem more efficiently.

1In some sources, the term ‘robust MDP’ is used as a synonym for the full uncertain MDP instead.
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Interval and Confidence MDPs

One commonly-used subset of uMDPs are Interval MDPs (IMDPs) [Nilim and Ghaoui, 2005], which are defined as:

Definition 3. An interval Markov decision process (IMDP) is a uMDP with an uncertainty set consisting only
of intervals. As such, an IMDP is given by a tuple MI = (S,A, I,P, R, γ), with:

• S,A,R, γ as defined for generic MDPs;
• I : {[pmin, pmax]|0 ≤ pmin ≤ pmax ≤ 1} the set of intervals 2: and
• P : S ×A× S → I the uncertain transition function.

For notational convenience, we further define pmin(s
′|s, a), pmax(s

′|s, a) as the bounds on the interval P(s′|s, a).

To model real-life problems, interval uncertainty sets are often sufficient. In particular, they straightforwardly represent
confidence intervals, which can arise both in RL-settings [Suilen et al., 2022], or in other settings where models are
based on sampling [Xiao et al., 2012, Jiang et al., 2022]. Moreover, the interval structure of IMDPs allows us to find
the robust transition function of IMDPs more quickly than for general uMDPs. To do this, we simply order transitions
from worst-case to best-case, then maximize worst-case probabilities and minimize best-case probabilities. More
formally, an implementation of value iteration using this idea is given in Algorithm 3.

Algorithm 3 VALUE ITERATION FOR IMDPS

Initialise V ∗;
while V ∗ not converged do

Re-order states such that V (s0) ≤ V (s1)... ≤ V (sn)
for s ∈ S do

for a ∈ A do
Set i = 0
ptotal =

∑
s′∈S pmin(s

′|s, a)
while ptot < 1 do

PR(s, a, si) = min{pmax(s
′|s, a), 1− ptot}

ptot = ptot +
(
pmax(s

′|s, a)− pmin(s
′|s, a)

)
i = i+ 1

∀j ≥ i : PR(sj |s, a) = pmin(sj |s, a)
V ∗(s) = maxa[R(s, a) + γ

∑
s′∈S PR(s

′|s, a)V ∗(s′)]
π∗(s) = argmaxa[R(s, a) + γ

∑
s′∈S PR(s

′|s, a)V ∗(s′)]

return V ∗, π∗

In addition to modeling settings with real model uncertainty, uMDPs can also be used as a way to compute risk-averse
policies for fully known models. In particular, Osogami [2012] proves that the problem of optimizing for a certain
class of risk measures can be interpreted as a robustness problem. For this, they introduce a class of uMDPs that have
uncertainty sets such that any probability is at most increased by a factor 1

α , where α is a parameter related to the risk
measure. We’ll refer to these as confidence MDPs, and formally define them as follows:

Definition 4. A confidence Markov decision process is given by a tuple Mc = (S,A, P, α,R, γ), with:
• S,A, P,R, γ as defined for generic MDPs: and
• α ∈ [0, 1] the confidence level;

For any confidence Markov decision process Mc, its uncertain transition function is defined as follows:

P(s′|s, a) = [0, p], with p = min{ 1
α
P (s′|s, a), 1} (5)

For the purpose of this thesis, confidence MDPs are used as an intuitive way to add uncertainty to generic MDPs,
which will prove useful for our empirical analysis.

2Other sources sometimes add the assumption that intervals are non-vanishing, meaning either pmin = pmax = 0 or pmin > 0.
However, we will allow vanishing intervals throughout this thesis.

8



Active Measuring in Uncertain Environments MERLIJN KRALE

Agent

at    MDP

at rt,st+ 1

POMDP

ot+ 1 ~O(s

A

t,at,st+ 1) 

rt = R( st,at)

Figure 4: Visualisation of interactions with a POMDP environment.

2.3 Partial Observability

When using an MDP framework, we assume agents have full knowledge of the state of their environment. However,
in many real-life applications, agents do not have full knowledge but can only infer the real state of the environment
from partial or noisy observations.

Partially observable MDPs (POMDPs) [Kaelbling et al., 1998] are an extension of the MDP framework, which ex-
presses the agents limited observation capabilities explicitly. They are defined as follows:

Definition 5. A partially observable Markov decision process (POMDP) is given by the tuple MP =
(S,A, P,Ω, O,R, γ), with:

• S,A, P,R, γ as defined for generic MDPs;
• Ω the set of observations: and
• O : S ×A× S → ∆(Ω) the observation function.

Interactions with POMDPs are visualized in Figure 4. They follow a similar pattern as that of generic MDPs, with
agents choosing an action at for each timestep t. However, instead of receiving full state information after each step,
the agent now receives an observation ot according to the observation function O(st, at, st+1). This means agents do
not know, but can only infer the real state of the model.

Belief states

In contrast to generic (u)MDPs, optimal policies for POMDPs generally require memory, meaning they need to re-
member past interactions. The most intuitive way to represent these interactions is with a history ht, defined as:

ht = (a0, o0, a1, o1, ...at, ot). (6)

Unfortunately, the size of this representation grows with time, meaning it is often impractical to use for policy com-
putation. Alternatively, a belief state bt gives the probability distribution over possible current states, which we can
define recursively as follows:

bt(s
′) =

{
δs′,s0 if t = 0,

Pr(s′|bt−1, at−1, ot−1) otherwise.
(7)

Applying Bayes’ rule to this equation, we may write a belief update function to calculate the next belief bt+1 as
follows:

bt+1(s
′) =

O(s′, ot)
∑

s∈S bt(s)P (s′|s, at)∑
s′′∈S O(s′′, ot)

∑
s∈S bt(s)P (s′′|s, at)

, (8)

where the numerator gives the probability of reaching state s′ and observing ot after taking action at in bt, while
the denominator is a ‘normalization factor’ which gives the total chance of observing ot after this belief-action pair.
Beliefs are considered a sufficient statistic [Kaelbling et al., 1998], meaning they summarize the full history ht well
enough for optimal policy computation.

9



Active Measuring in Uncertain Environments MERLIJN KRALE
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Figure 5: A simple example of a POMDP where QMDP takes a sub-optimal actions. After taking action a in s0, action
c is optimal (for any γ > 0.5), since this gives us an observation with which we can determine our current state.
However, with the QMDP assumption of full observability for future states, the value of being able to distinguish s′1
and s′2 is ignored, in which case action c is suboptimal as compared to action a.

Solving POMDPs

Although exact methods of solving POMDPs exist [Sondik, 1978], the problem of finding exact solutions is known
to be PSPACE-complete in general and thus infeasibly hard for practical applications [Papadimitriou and Tsitsiklis,
1987]. Thus, POMDPs are often solved approximately instead. Many different approximation methods for POMDPs
exist, including Monte Carlo methods (such as POMCP, Silver and Veness [2010]), neural networks (such as Deep
Recurrent Q-learning Networks, Hausknecht and Stone [2015]), or point-based belief methods [Shani et al., 2013].

Another such approximate method is QMDP. Introduced by Littman et al. [1995], the idea of this method is to approx-
imate the Q-values for a given belief using those of the underlying MDP, as follows:

Q(b, a) ≈
∑
s∈S

b(s)QMDP(s, a) =
∑
s∈S

b(s)R(s, a) + γ
∑
s′∈S

P (s′|s, a)VMDP(s
′), (9)

where QMDP, VMDP are the optimal Q-value and generic value functions of the underlying MDP, or equivalently, the
POMDP where observation function O always returns the current state. The QMDP algorithm, then, starts by pre-
computing the value function for the underlying MDP, then for each step computes its current belief and takes the best
action according to Equation (9). An implementation is shown in Algorithm 4.

Algorithm 4 Q-MDP

Precompute QMDP
Intitialize b0 = δ(s, s0), t = 0
while episode not done do

at ← argmaxa∈A

∑
s∈S bt(s)QMDP(s, a)

Perform action at, receive rt, ot
Compute bt+1 using (bt, at, ot) in Equation (8)
t = t+ 1

return
∑

t γ
trt

The main advantage of QMDP over other approximation methods is its speed: MDPs can generally be solved very
efficiently, and after that choosing actions with the QMDP method is very quick. However, since the method essentially
disregards state uncertainty for future steps, it never takes actions that give extra information through their observations
if these actions would be sub-optimal (or have no effect) in a fully observable setting. An example of such a setting is
shown in Figure 5.
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Figure 6: Visualisation of interactions with an ACNO-MDP environment.

2.4 ACNO-MDPs

POMDPs are a powerful framework for modeling state uncertainty but can be hard to solve. For this reason, researchers
sometimes focus on subsets of POMDPs with properties that make policy computation more tractable.

Action contingent noiselessly observable MDPs (ACNO-MDPs) [Bellinger et al., 2021, Nam et al., 2021] are a subset
of POMDPs specifically designed for active measure problems as defined in the introduction, defined as follows:

Definition 6. An action-contingent noiselessly-observable Markov decision process (ACNO-MDP) is given by
the tupleMA = (S, Ã, P,R, c, γ), with:

• (S, P,R, γ) as for generic MDPs;
• Ã = A×M = A× {0, 1} the set of action pairs: and
• c ∈ R the measurement cost.

Futhermore, we define an observation set Ω : S ∪ {⊥} and observation function O : S ×M → Ω, such that:

O(s,m) =

{⊥ if m = 0

s if m = 1.
(10)

Lastly, we define the measuring cost function C : M → R, such that:

C(m) =

{
0 if m = 0

c if m = 1.
(11)

Agent-environment interactions for ACNO-MDPs are similar to those of generic POMDPs and are visualized in
Figure 6. Starting in some initial state s0, for each time-step t, the agent chooses to execute an action pair
⟨at,mt⟩, consisting of control action at and measuring action mt. The environment then transitions to a new state
st+1 ∼ P (·|s, a), which we note is independent of the measuring action mt. Lastly, the environment returns observa-
tion ot = O(st+1,m), as well as both a return rt and measuring cost ct = C(m). We combine the latter two into a
scalarized reward r̂t = rt − ct = R(st, at) − C(mt). The goal of the agent is to maximize the expected discounted
scalarized returns E[γtr̂t].

ACNO-MDPs nicely represent the measuring behavior described in our motivating example. However, we point out a
number of assumptions that may not hold in many real-life applications:

• Complete measurements: a measurement returns full state information. In reality, certain measurements
might only give partial state information, e.g. a speedometer might measure speed but not position.

• Noiseless measurements: the observations are always error-free. In reality, measurements may contain spo-
radic errors or only give uncertain state information.

• Predictably costly: measuring has a constant cost that can be compared directly to gained returns. In reality,
measuring costs may fluctuate depending on state, time, or the number of previous measurements, or the total
costs might be constrained.

ACNO-MPDs are a particularly interesting framework for RL settings, where we assume the model dynamics are
unknown but can be learned through interactions. In these settings, learning a model through taking some kind of
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Figure 7: Visualisation of the control-loop for solving ACNO-MDPs using the act-then-measure heuristic.

measurement might have costs that need to be weighed against expected returns. Thus, most previous research has
focussed on such RL applications [Bellinger et al., 2021, Nam et al., 2021].

The Act-then-measure Heuristic & Measuring Value

The act-then-measure (ATM) heuristic is a method I proposed in my research internship (published as [Krale et al.,
2023]) for finding approximately optimal policies for ACNO-MDPs by making use of the explicit distinction be-
tween measuring and non-measuring actions. Inspired by the QMDP method for POMDPs mentioned earlier, the ATM
heuristic can be stated as follows:

When choosing control actions, assume all (state) uncertainty will be resolved in the next state(s).

Like for QMDP, this assumption suggests control actions can be chosen using Equation (9), which can be done very
efficiently. Moreover, the main downside of QMDP does not apply in the same way here since control actions do not
influence observations directly. Thus, situations like Figure 5 will not occur.

To determine when to measure, we use measuring value, defined as the difference in expected returns between mea-
suring and not measuring:

MV(b, a) = QATM(b, ⟨a, 1⟩)−QATM(b, ⟨a, 0⟩), (12)
where QATM is the Q-value of a belief-action pair assuming future control actions are chosen according to Equation (9).
We choose to measure only if doing so gives us higher expected returns, giving us the following measuring condition:

mMV(b, a) =

{
1 if MV (b, a) ≥ 0

0 otherwise .
(13)

Combing our methods of choosing control- and measuring actions, we define a planning algorithm for following the
ATM heuristic, as shown in Algorithm 5 and visualized in Figure 7:

Algorithm 5 ATM PLANNER(P,Q, s0)

Intitialize b0 = δ(s, s0), t = 0
while episode not done do

Pick control action at using bt in Equation (9)
Pick mt using bt and at in Equation (12)
Execute ãt = ⟨at,mt⟩, receive reward r̃t and observation ot
Compute bt+1 using bt, at, ot in Equation (8)

return
∑

t γ
tr̃t

12
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Figure 8: An example uPOMDP which shows worst-case transitions are generally belief-dependent.

2.5 Combining Uncertainties

Uncertain partially observable MDPs are a framework that combines the partial observability of POMDPs with the
model uncertainty of uMDPs. They are defined as follows:

Definition 7. An uncertaint partially observable Markov decision process (uPOMDP) is given by a tupleMu =
(S,A,U ,P,Ω, O,R, γ), with:

• (S,A,R, γ) as for generic MDPs;
• U ,P as for uMDPs: and
• Ω, O as for POMDPs.

Agent-model interactions can be defined as before, where we assume partial observability only for the agent, meaning
nature has full observability of both the current state and the agent’s current belief.

As for POMDPs, optimal policies for uPOMDPs generally rely on past interactions. However, these cannot be sum-
marized with only a probability distribution over states, but must instead incorporate all possible choices of transition
functions by nature. Both Rasouli and Saghafian [2018] and Bovy [2023] tackle this problem, but their solutions
scale too poorly for our aims. However, if we focus only on the worst-case choices of nature (i.e., we optimize for
robustness), then Osogami [2015] shows we can construct robust beliefs according to the worst-case dynamics, which
do function as sufficient statistics and information states. The rest of this section will thus focus on this problem.

Dynamic uPOMDPs

For robustness in uPOMDPs, we start by noticing that in contrast to generic (infinite-horizon) uMDPs, there is a
difference between dynamic and non-dynamic (or static) models. We recall that dynamic models assume nature can
choose transition probabilities independently of its previous choices, while in a static model, it must always choose
the same probabilities for the same state-action pair. Intuitively, in uPOMDPs, agents may act differently in the same
state depending on their current belief, which means that worst-case transitions for a state may be different as well.

As an example, consider the model of Figure 8, where an agent currently has a belief over states s0 and s1. For its
next step, the expected reward is minimized if the reward for action a is equal to that of action b, which is achieved
if b′(s−)=0.5 + ϵ, b′(s+)=0.5−ϵ. However, depending on the current belief b, this is achieved by different transition
probabilities p−, p+. If we consider s1 separately (i.e. b(s1)=1), the worst-case is given by p−=0.5+ϵ. If instead the
probability is divided equally between s0 and s1 (i.e. b(s0)=0.5, b(s1)=0.5), the worst-case is given by p−=ϵ.

The above example shows we cannot represent our robust model with a value- and transition function of the forms
V ∗
R : S → R and PR : S × A → ∆(S), but are forced to make the transition function belief-dependent with forms

V ∗
R : S ×∆(S)→ R and PR : S ×∆(S)×A→ ∆(S).

Solving uPOMDPs

In principle, optimal policies for uPOMDPs can be computed with a variant of value iteration over all possible beliefs,
as proposed in Osogami [2015]. In practice, however, even for simple uncertainty sets, such value iteration quickly be-
comes intractable. For instance, notice that the simple method of Algorithm 3 would not work for interval POMDPs as
shown by the above example, meaning a more expensive solving method is required. For better scalability, Cubuktepe
et al. [2021] instead compute (non-optimal) policies as finite state machines and use model checking to verify their
performance lies above a specified bound. This method scales to bigger environments, but its limited memory makes
it ill-suited for environments with sparse observations, such as the active measure environments considered here.
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3 uACNO-MDPs

In this section, we introduce uACNO-MDPs as the combination of the uMDP and ACNO-MDP frameworks explained
above. We start by giving a formal definition, then highlight a few noteworthy properties of uACNO-MDPs, and
finally revisit the motivating example of the introduction as a concrete uACNO-MDP.

3.1 Definition

For completeness, let us fully write out the definition of our new framework as follows:

Definition 8. An uncertaint action-contingent noiselessly observable Markov decision process (uACNO-MDP)
is given by a tupleM = (S, Ã = A×M,U ,P, R, c, γ), defined as follow:

• S the set of states;
• A the set of control actions;
• M = {0, 1} the set of measurement actions;
• Ã = A×M the set of action pairs;
• U the uncertainty set;
• P : S ×A× S → U the uncertain transition function;
• R : S ×A→ R the reward function3;
• c ∈ R the measurement cost: and
• γ ∈ ⟨0, 1] the discount factor.

Futhermore, we define an observation set Ω : S ∪ {⊥} and observation function O : S ×M → Ω, such that:

O(s,m) =

{⊥ if m = 0

s if m = 1.
(14)

Lastly, we define the measuring cost function C : M → R, such that:

C(m) =

{
0 if m = 0

c if m = 1.
(15)

Agent-environment interactions for uACNO-MDPs can be viewed as a two-player game between the agent and ‘na-
ture’. Starting from some initial state s0, for each time-step t, the agent chooses an action pair ãt = ⟨at,mt⟩ to
execute according to some policy π.states, meaning policies are of the form π(bt). Based on the chosen action pair,
the current state, and the agent’s current belief, nature picks a transition function P (·|st, ãt), subject to the constraint
that ∀s′ : P (s′|st, ãt) ∈ P(s′|st, at) and

∑
s′∈S P (s′|st, ãt) = 1. The environment then transition to a new state

st+1 ∼ P (·|st, at), and returns to the agent a scalarized reward r̃t=rt − C(mt) and observation ot = O(·|st+1,mt).

The goal of the agent is to compute a policy π with the highest expected total discounted scalarized reward. For
this thesis, we’ll assume these policies are belief-based, meaning they are of the form π : ∆(S) → Ã. We note
that our definition of agent-environment interactions implicitly assumes a dynamic and rectangular system and full
observability for nature, which are common assumptions for uPOMDPs.

For the case of an adversarial nature, we denote PR and VR as the worst-case transition- and value function, which
(as for uPOMDPs) are both belief-dependent. To write these out fully, we start by defining b′R(b, ã) as an expected
distribution over states in the next step when taking action pair ã in belief b, given by:

b′R(s
′|b, ã) =

∑
s∈S

b(s)PR(s
′|s, b, ã). (16)

Using this notation, we define the robust value function V ∗
R as follows:

V ∗
R(b) = max

ã=⟨a,m⟩∈Ã
inf

PR(·|s,b,ã)∈P(·|s,a)

∑
s∈S

b(s)

(
R(s, a)− C(m) + γ

∑
s′∈s

PR

(
s′|s, b, ã

)
V ∗
R

(
b′R(b, ã)

))
, (17)

3For notational convenience, we overload this function for action-measurement pairs as R(s, ⟨a,m⟩) = R(s, a).
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Figure 9: Two example environments to show properties of uACNO-MDPs.

where we note b′R is dependent on PR and thus affected by the minimization. For completeness, we also define the
robust transition function PR as follows:

PR(s
′|s, b, ã) = arg inf

PR(s′|s,b,ã)∈P(s′|s,a)
V ∗
R

(
b′R(b,

′ ã)
)

s.t.
∑
s′′∈S

PR(s
′′|s, b, ã) = 1

(18)

3.2 Properties of uACNO-MDPs

Here, we highlight a number of interesting properties of uACNO-MDPs that follow from our definition. For this, we
use two examples (Figures 9a and 9b), both of which will also be used in our empirical analysis.

3.2.1 Transition Functions Depend on Measurements

In Equation (18), we have defined our robust transition function to be dependent on the complete action pair ã rather
than on only control actions a. This dependency was not present for generic ACNO-MDPs, where the transition
function was assumed to be independent of measurements.

Let us first show an example of why this dependency must hold. Consider the uACNO-MDP shown in Figure 9a,
which we’ll refer to as the a-b environment. This environment has three states: an initial state s0, and two next states
s− and s+, which have different optimal actions a and b. Furthermore, the reward for taking the optimal action in s−
is slightly lower than that in s+.

Now, let us determine the worst-case probabilities of p for both a measuring and non-measuring action pair. When
measuring, s− has a lower expected value than s+, meaning the worst-case transition has p = 1. However, when
not measured, having this deterministic transition means the agent can safely pick action a and receive a reward 0.8.
Clearly, the expected return can be made much lower if p is closer to 0.5 instead 4. Thus, we find the worst-case
transition function must be dependent on the measuring action chosen.

To generalize our example, we may state that for fully observable transitions (such as when measuring), worst-case
transitions simply maximize worst-case outcomes, leading to low-variance transitions. However, for partially observ-
able transitions (such as when not measuring), high-variance transitions are often worse since these make it harder to
take optimal actions. For uACNO-MDPs, we summarize this observation as follows:

Observation 1. In the worst case, transitions are generally low variance when measuring but may be high
variance when not measuring.

3.2.2 High Uncertainty Discourages Measuring

Similarly to how Observation 1 shows a relation between measuring and the variance of a transition, we also observe
an interesting relation between measuring and the uncertainty of a transition.

4More precisely, the worst-case is achieved for p− = 0.56, which yields expected returns 0.36.
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Figure 10: Visualisation of our motivating example. A drone has to plan a path through a corridor with (wind)
disturbances, for which it can request measurements from a motion capture (MoCap) system.

Consider the uACNO-MDP shown in Figure 9b, which we will refer to as the lucky-unlucky environment. Like before,
this environment has three states s0, s−, and s+, but we now interpret these as a lucky and unlucky state, which are
otherwise the same. In both states, taking action ‘safe’ b leads to a neutral reward of 0, while taking ‘risky’ action a
gives a positive reward in s+ and a negative reward in s−.

Again, we make our problem concrete by setting pmax = 1, and are now interested in measuring behavior for different
uncertainty intervals, i.e., values for pmax. We notice the expected returns for s− are strictly lower than those of s+,
meaning the worst-case environment is always given by maximizing p, regardless of whether the agent measures.
Consider first pmax = 1, then the transition function is deterministic, and measuring is sub-optimal. However, we
notice that for any pmax > 0 and finite c, measuring would be optimal since this gives a chance of achieving infinite
returns. Counterintuitively, we thus find that for larger model uncertainties, optimal robust policies might take fewer
measurements to alleviate uncertainty. We may summarize this finding as follows:

Observation 2. In the worst case, higher uncertainty does not necessarily make measuring more valuable.

We note that this property may occur even for finite returns and non-zero probabilities, although the effect is less
extreme. For example, suppose the best- and worst-case rewards in Figure 9b are given by ±1 instead of ±∞. Then,
the expected value when measuring is given by p − c, meaning measuring is optimal for (1 − p) ≥ c. Thus, for any
pmax < c, measuring will be suboptimal, even though it would yield positive returns for any (1− pmax) ≥ c.

The behavior described here results from optimal robust policies (over) optimizing for the worst case. The higher the
model uncertainty, the more likely worst-case outcomes become, and for these, it is generally less valuable to take
measurements. This property makes sense in contexts where the environment is adversarial, such as for security appli-
cations. However, in many contexts, the environment is only assumed to be adversarial to guarantee good performance
over the entire uncertainty set. In such cases, it seems undesirable that being more conservative about the uncertainty
of the model could lead to policies that take fewer measurements. We will return to this behavior in Section 5.

3.3 Example: a Drone in a Corridor

As a slight tangent, this subsection describes a concrete implementation of the motivating example from the introduc-
tion as an uACNO-MDP. This environment will be used in Section 6 to test our methods, meaning this subsection
serves both as a concrete example of an uACNO-MDP as well as a complete description of a testing environment. The
environment is visualized in Figure 10.

Discretized Dynamics

To start, let us define a simple generic framework to represent continuous movement using discrete variables 5. Firstly,
we represent the drone’s position as coordinates in a grid, meaning the drone’s position can be expressed as p = ⟨x, y⟩,
with x, y ∈ Z grid coordinates. For simplicity, we’ll assume independence in dynamics between these two directions.
With this assumption, we define velocity as v = ⟨vx, vy⟩ ∈ Z2, which represents the number of grid cells moved each
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timestep. Lastly, we define acceleration a = ⟨ax, ay⟩ ∈ Z2 and perturbations w = ⟨wx, wy⟩ ∈ Z2, which influence
the change in velocity for each time-step. The (discrete-time) dynamics of our system are described as follows:

xt = xt−1 + ⌊
vx,t−1 + vx,t

2
⌋, vx,t = vx,t−1 + ax,t + wx,t,

yt = yt−1 + ⌊
vy,t−1 + vy,t

2
⌋, vy,t = vy,t−1 + ay,t + wy,t.

(19)

For the positions variables i ∈ {x, y}, we note that ⌊ vi,t−1+vi,t
2 ⌊ represents the average velocity during timestep t,

which could be a fraction and thus needs to be rounded.

This simple framework can be used to express an MDP with states of form s = ⟨p, v⟩ = ⟨x, y, vx, vy⟩, actions of form
a = ⟨ax, ay⟩, any reward function R, and a transition function PW following Equation (19) for a given probability
distribution W : ∆(Z) over perturbations w.

A Drone in a Corridor

To make these general dynamics concrete for our environment, we first represent our corridor by two overlapping
rectangles of 6 × 30 squares 6, with all values outside this area expressed as one sink-state ssink. Next, we restrict
velocities to be within the range [−vmax, vmax] = [−5, 5], with any value outside this range set to the closest valid
value. Similarly, we restrict accelerations to be within the range [−amax, amax] = [−2, 2], giving us a finite action
space. We choose a probability distribution W based loosely on a Gaussian:

wi∈{x,y},t =


0 with probability 0.68,

±1 with probabilities 0.14,
±2 with probabilities 0.02.

(20)

We define an initial state s0 = ⟨x=29, y=2, vx=vy=0⟩ corresponding to a motionless drone at one end of the corridor.
Lastly, we define a simple reward function that yields one only if a goal area at the other end of the corridor is reached:

R(s, a) =

{
1 if y > 27 and s ̸= ssink,

0 otherwise.
(21)

Episodes end either if s = ssink, representing a crash, or the goal area is reached. The full MDP has a state space S of
size |S| = 26.245 and action space A of size |A| = 25, with each state-action pair having up to 25 successor states.

From MDP to uACNO-MDP

To turn our environment into an uACNO-MDP, we start by defining a confidence MDP (Section 2.2) with confidence
level α, using the above MDP as its base. This environment has an uncertain transition function P with maximum
transition probabilities equal to those in the generic MDP times a factor 1/α, capped at 1. Put another way, both
independent directions follow a conditional probability distribution given as:

∀i ∈ {x, y} : Pr(it|, it−1, vi,t−1, ai,t−1) =


[0,max( 0.02α , 1)] if it = it−1 + ⌊vi,t−1 + ai,t−1⌋
[0,max( 0.14α , 1)] if it = it−1 + ⌊vi,t−1 + ai,t−1 ± 1⌋
[0,max( 0.68α , 1)] if it = it−1 + ⌊vi,t−1 + ai,t−1 ± 2⌋

(22)

To turn this into a uACNO-MDP, we simply add a measuring cost c, and all components are defined.

5Since this example is only used illustratively, we will use a simple and easy-to-understand representation rather than a more
robust abstraction method. For more formal methods, see e.g. Badings et al. [2023].

6To be more concrete, we can imagine these grid cells have length l ≈ 20cm, in which case we have a 1.2m wide corridor.
Further assuming times-steps of 1s, we get speeds which increment by 0.2m/s up to a maximum of 1m/s, and accelerations up to
a maximum of 0.4m/s2.
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4 Act-then-measure in uACNO-MDPs

In this section, we discuss how to translate the act-then-measure (ATM) heuristic from Krale et al. [2023], as discussed
in Section 2.4, to the uACNO-MDP framework. As we will see later, this section requires us to additionally make
assumptions about measuring actions to make computations tractable. Thus, we define the robust act-then-measure
heuristic as follows:

The robust act-then-measure (RATM) heuristic:
1. chooses control-actions assuming that all (state) uncertainty will be resolved in the next states (after one

time-step); and
2. chooses measuring-actions and updates beliefs assuming that all (state) uncertainty will be resolved

after the next states (after two time-steps).

As in the standard setting, the first point of the heuristic allows us to pick control actions independently from measuring
actions, since measurements only affect state uncertainty. Thus, our high-level strategy is given by Algorithm 6. The
remainder of this section will explain in detail how to perform each step in this algorithm.

Algorithm 6 ROBUST ATM PLANNER

Pre-compute PRMDP and QRMDP
Initialise b0(s) = δ(s, s0)
while episode not completed do

Pick control action at ▷ Equation (23)
Pick corresponding measuring action mt ▷ Equation (25)
Execute ãt = ⟨at,mt⟩
Receive reward r̃t and observation ot
Determine next worst-case belief state bt+1 ▷ Equation (16)

return
∑

t γ
tr̃t

4.1 Choosing Control Actions

Similar to the QMDP heuristic [Littman et al., 1995], the RATM heuristic means that returns of control actions can be
approximated by those of the underlying RMDP:

QRATM(b, a) =
∑
s∈S

b(s)QRMDP(s, a) ≈ QR(b, a), (23)

where QRATM denotes the approximate expected value when following the RATM heuristic, and QRMDP and QR denote
optimal expected values for the uACNO-MDP and its underlying uMDP, respectively. As discussed in Section 2.2,
uMDPs can be solved very efficiently as long as their uncertainty set is convex. Thus, our heuristic allows us to quickly
compute control actions, especially in comparison to methods that fully consider partial observability.

4.2 Computing Measuring Value

Next, we need a method to pick measurement actions. For this, we define the robust measuring value MVRATM as the
difference in expected value between measuring and non-measuring actions:

MVRATM(b, a) = QRATM(b, ⟨a, 1⟩)−QRATM(b, ⟨a, 0⟩). (24)

Measuring is optimal for positive measuring values only, which yields the following measuring condition:

mRATM(b, a) =

{
1 if MVRATM(b, a) ≥ 0;

0 otherwise,
(25)

To compute MVRATM, we need expressions for QRATM(b, ⟨a, 1⟩) and QRATM(b, ⟨a, 0⟩). We note that the RATM heuris-
tic means that for both, Equation (23) can be applied to all beliefs after the next one. Thus, the Q-value when measuring
is given as:

QRATM(b, ⟨a, 1⟩) = R(b, a)− c+ γ
∑
s

b(s)
[∑

s′

PR(s
′|s, ⟨a, 1⟩, b)max

a
QRMDP(s

′, a)
]
, (26)
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with R(b, a)=
∑

s b(s)R(s, a). Here, we decide the next actions for each state separately, which we can only do if we
take a measurement. When not measuring, we must instead pick an optimal action considering all possible next states:

QRATM(b, ⟨a, 0⟩) = R(b, a) + γ
∑
s

b(s)
[
max

a

∑
s′

PR(s
′|s, ⟨a, 0⟩, b)QRMDP(s

′, a)
]
. (27)

Combining both equations, we write the robust measuring value of Equation (24) as follows:

MVRATM(b, a) = −c+max
a′∈A

γ
∑
s∈S

b(s)
[
QRMDP(s, a)−

∑
s′∈S

PR(s
′|s, ⟨a, 0⟩, b)QRMDP(s

′, a′)
]
. (28)

We notice that this equation contains only belief-independent and thus pre-computable quantities, with the exception
of the transition function PR. This function is equal to PRMDP when measuring and otherwise given as:

PR(s
′|s, ⟨a, 0⟩, b) = max

ab∈A
min

P (·|s,a)∈P(s,a,·)

∑
s

b(s)
[ ∑
s′∈S

P (s′|s, a)QRMDP(s
′, ab)

]
. (29)

This equation includes a (non-trivial) optimization problem, which has to be computed at every step and scales with
the size of the current belief. In our experiments (Section 6), we find these computations are tractable but take up
the majority of the (online) runtime. With all quantities defined, we have fully described all steps in Algorithm 6.
Alternatively, we may define this algorithm as a policy:

πRATM(b) = ⟨max
a∈A

QR
(
b, a

)
,mRATM

(
b,max

a∈A
QR(b, a)

)
⟩. (30)
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Figure 11: An example uACNO-MDP where using an optimistic measuring value in measurement-lenient policies is
sub-optimal.

5 Measurement Leniency

5.1 Defining Measurement Leniency

In this section, we propose a new concept called measurement leniency as a solution for the (overly) conservative
measuring behavior of robust policies described in Observation 2. Intuitively, measurement leniency means agents
take control actions robustly but allow extra measurements to be made according to non-robust metrics (such as to
optimize average expected returns)7. Since the cost of extra measurements is bounded and predictable, measurement
leniency might give sufficient robustness guarantees for many real-life applications while allowing less conservative
behavior. Formally, we define measurement leniency as follows:

Definition 9. LetM be an uACNO-MDP, and πR a robust policy forM. A measurement-lenient policy πML is
a policy with the following properties:

1. ∀b, πR(b) = ⟨a, 1⟩ =⇒ πML(b) = ⟨a, 1⟩
2. ∀b, πR(b) = ⟨a, 0⟩ =⇒ πMLb) = ⟨a,m⟩

Using this definition, we define our new objective as finding the measurement-lenient policy which has the highest
expected return for some ACNO-MDPMML. Here,MML can be viewed as a less conservative representation of the
environment. For example, if a probability distribution over transition functions is known,MML could represent the
most-likely behavior. We formalize optimal measurement-lenient policies as follows:

Definition 10. Let M be an uACNO-MDP with a robust policy πR, and ΠML the corresponding set of
measurement-lenient policies. Furthermore, letMML be an ACNO-MDP with the same state- and action space
asM. The optimal measurement-lenient policy π∗

ML with respect toMML is defined as follows:

π∗
ML = arg max

πML∈ΠML
EπML,MML

∑
t

γtr̃t (31)

5.2 Computing Measurement-Lenient policies

By construction, control actions of measurement-lenient policies are equal to those in fully robust policies, meaning
we can use Equation (23) to compute them. For readability, we denote these as aR(bR) = maxa∈A QR(bR, a).

For measurement choices, measurement-lenient policies should maximize expected values in MML. To compute
this, we need to keep track of the current belief according to the dynamics of MML, which we’ll denote as bML.
Correspondingly, we denote b′ML(b, ã) as the belief after taking action ã in belief b However, simply using this belief
to compute generic measuring value for MML does not yield the correct behavior since this does not correctly take
into account that future control actions will be based onMR instead.

To show this, consider Figure 11, and assume we choose our measuring actions based on the best-case ACNO-MDP
where p+ = 1. In this environment, the optimal actions for states s+ and s− are b and a respectively, which using
Equation (12) tells us measuring is optimal for c ≤ 0.5. However, for a measurement-lenient policy, control actions are

7This behavior intuitively matches with our ATM heuristic, where control actions and measurements are already chosen sepa-
rately. However, this section will give a general definition of measurement leniency with no assumptions about the original policy.
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chosen according to the worst-case where p+ = 0. In that environment, both s+ and s− have the same optimal control
action a, meaning measuring has no effect. Thus, considering only the measuring value ofMML for measurement-
lenient policies would lead to sub-optimal measuring behavior.

Instead of only using the measuring value ofMML, measurement-lenient policies should thus take into account that
future control actions will be chosen according toM. To express this, we start by defining the Q-value function for
following a measurement-lenient policy inMML as follows:

QML(bML, bR, ⟨a,m⟩) = R(bML, a)− C(m) + γ max
m′∈M

QML

(
b′ML(bML, ã), b

′
R(bR, ã), ⟨aR(b′R),m′⟩

)
(32)

As previously, we are interested in finding the measuring value for this policy, which is given as:

MVML(bML, bR, a) = QML(bML, bR, ⟨a, 1⟩)−QML(bML, bR, ⟨a, 0⟩) (33)

Writing this out explicitly, we first note that after a measurement, b′R and b′ML are always equal to the observation that
has been made. Thus, the Q-value when measuring can be expressed as follows:

QML(bML, bR, ⟨a, 1⟩) = R(bML, a)− c+ γ
∑
s∈S

b′ML(s|bML, ã) max
m′∈M

QML(s, s, ⟨aR(s),m′⟩) (34)

Unfortunately, there’s no way to simplify our expression for non-measuring actions without making further assump-
tions about the policy choosing control actions. One solution is to make (strong) assumptions about the robust policy
used. For example, the assumption that QML is linear in both bML and bR, would yield the following:

QML(bML, bR, ⟨a, 0⟩) = R(bML, a) + γ max
m′∈M

∑
s∈S

∑
s′∈S

b′ML(s|bML, ã)b
′
R(s

′|bR, ã)QML(s, s
′, ⟨aR(s′),m′⟩). (35)

Even with this strong assumption, however, the number of distinct Q-values that need to be computed grows quadrat-
ically with the number of states, which makes computations expensive for larger environments. As an alternative, we
thus propose to approximate our Q-values using the optional act-then-measure heuristic from Section 4 for MML.
We’ll state this as follows:

Robust control approximation: When choosing measurement-lenient measuring actions, assume all (state)
uncertainty will be resolved after the next state.

Using this approximation, we can simplify our equations by replacing future Q-values with those of the fully observ-
able variant of the environment. We denote this Q-value as QCRMDP and rewrite Equation (32) as follows:

QML(bML, bR, ⟨a,m⟩) ≈ R(bML, a)− C(m) + γ
∑
s′∈S

QCRMDP

(
s′, aR

(
b′R(bR, ⟨a,m⟩)

))
(36)

Interestingly, we find this expression requires no optimization since future measurements have no direct effect on the
approximate Q-values used. Using this expression, we simplify our equation for measurement-lenient measuring value
as follows:

MVML(bC , bR, a) ≈ −C(m) + γ max
ab∈A

∑
s∈S

max
a∈A

QCRMDP(s
′, a)−QCRMDP(s

′, ab) (37)

For our measurement-lenient policy, our measuring condition should require that both MVML and MVR are greater
than 0. Thus, the measuring condition for a measurement-lenient policy looks as follows:

mML(bCR, bR, a) =


1 if MVCR(bCR, a) ≥ 0

or MVR(bR, a) ≥ 0

0 otherwise.
(38)
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5.3 Performance Regret of Measurement-Lenient Policies

One obvious downside of using measurement-lenient policies is their worst-case performance loss as compared to
their robust counterparts. However, we can show that this performance loss is bounded. Intuitively, this bound follows
from the fact that measurement-lenient policies only take extra measurements, and these can only decrease the total
expected returns by c. Thus, the total performance loss of measurement-lenient policies is bounded by the expected
number of measurements times the cost of measuring. We formally state this as follows:

Theorem 1. Given an uACNO-MDPM and a set of belief states B. Let π be any policy such that b ∈ B =⇒
∃a : π(b) = ⟨a, 0⟩, and π′ a policy defined as follows:

π′(b) =

{⟨a, 1⟩ if b ∈ B and π(b) = ⟨a, 0⟩
π(b) otherwise

(39)

Furthermore, let NB(π, b0) denote a (possibly infinite) upper limit for the expected number of visits of any belief
in b ∈ B when following a policy π from any (initial) belief b0, defined as follows:

NB(π, b0) =


⌈∑s∈S b′R(s|b0, π(b0))NB(π, s)⌉+ 1 if b0 ∈ B and ∃a : π(b0) = ⟨a, 1⟩
⌈∑s∈S b′R(s|b0, π(b0))NB(π, s)⌉ if b0 /∈ B and ∃a : π(b0) = ⟨a, 1⟩
NB(π, b

′
R(b0, π(b0))) + 1 if b0 ∈ B and ∃a : π(b0) = ⟨a, 0⟩

NB(π, b
′
R(b0, π(b0))) if b0 /∈ B and ∃a : π(b0) = ⟨a, 0⟩.

(40)

Then, the following holds:

∀b : V (π, b)− V (π′, b) ≤
NB(π′,b)∑

n=0

γnc. (41)

Corollary 1. Since measurement-lenient policies can be defined from their robust counterparts using Equa-
tion (39), their performance loss follows the same bound.

Corollary 2. For any environment where B or NB are not known, we can use the following over-estimation:

∀b : V (π, b)− V (π′, b) ≤
∞∑

n=0

γnc (42)

Proof. Let V H and NH
B ≤ H denote V and NB for some horizon H . Then, the following is equivalent to our theorem:

∀b : lim
H→∞

V H(π, b)− V H(π′, b) ≤
NH

B (π′,b)∑
n=0

γnc (43)

We show this equation holds via induction over H . As a base case, we note the equation trivially holds for H = 1, in
which case the difference is simply given by c.

For H > 1, we first note that the equation trivially holds for beliefs where both policies pick the same action pair.
Thus, we only need to prove the equation holds for beliefs b ∈ B, which are the only beliefs where both policies
pick different measurements. For any such belief b, denote the control action picked by both policies as a, then the
difference in finite-horizon value functions is given as:

V H(π, b)− V H(π′, b) =
(
R(b, a) + γV H−1(π, b′R

(
b, ⟨a, 0⟩

))
−

(
R(b, a)− c+ γV H−1(π′, b′R

(
b, ⟨a, 1⟩

))
= c+ γ

(
V H−1

(
π, b′R(b, ⟨a, 0⟩)

)
− V H−1(π′, b′R

(
b, ⟨a, 1⟩

)) (44)

To simplify this, we use the following general inequality:

∀b, a, π : V (π, b′R(b, ⟨a, 0⟩)) ≤ V (π, b′R(b, ⟨a, 1⟩)) (45)

Using this, we replace b′R(b, ⟨a, 0⟩) with b′R(b, ⟨a, 1⟩) in the first value function of Equation (44). Moreover, we can
now re-write our value function as a sum over states, as follows:
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V H(π, b)− V H(π′, b) ≤ c+ γ
∑
s∈S

b′R(s
′|b, ⟨a, 1⟩)

(
V H−1(π, s)− V H−1(π′, s)

)

≤ c+ γ
(∑

s∈S

b′R(s
′|b, ⟨a, 1⟩)

NH
B (π′,s)∑
n=0

γnc
)
,

(46)

where we obtain the second line by using our induction hypothesis. Next, we try finding an upper bound for the
bracketed term. From the definition of NB, we obtain the following constraint for measuring for beliefs in B;∑

s∈S

b′R(s|b, π(b))NH
B (π, s) ≤ NH

B (π, b)− 1. (47)

For each state s, we notice that the contribution to this constraint grows quicker with NH
B (π, s) than its contribution

to the bracketed term in Equation (46). Thus, it achieves its maximum when NH
B (π, s) is equal for all next states, or

more precisely when ∀s : NN
B (π′, s) = NN

B (π′, b)− 1. We use this as an upper bound to Equation (46), in which case
the sum over all states can be left out to give the following:

V H(π, b)− V H(π′, b) ≤ c+ γ

NN
B (π′,b)−1∑

n=0

γnc

≤
NN

B (π′,b)∑
n=0

γnc.

(48)

This proves our induction step for H and thus the theorem.
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6 Empirical Analysis

In this section, we give an empirical analysis of our proposed methods on a number of environments. We start by
describing the setup of our experiments, then show the results and highlight some key conclusions. All code, results,
and plots can be found at https://github.com/MKrale/ATM.

The code used for the analysis was written in Python and makes use of the OpenAI Gym interface for all environments
[Brockman et al., 2016], with a wrapper to add ACNO-MDP functionality. From these environments, we pre-learn the
transition- and value functions using a slightly altered version of the method of Araya-López et al. [2011]. As a side
effect of this implementation, our code can be run on any tabular environment implementing the Gym interface with
only slight alterations. For efficiency, we also pre-compute PRMDP and QRMDP using a variant of Algorithm 3, and
re-use these for all algorithms.

6.1 Algorithms

In our testing, we include the following algorithms:

• ATM: the generic ATM planner of Krale et al. [2023].

• RATM: the fully robust ATM algorithm as described in Section 4.

• MLATM: the measurement-lenient variant of the ATM algorithm, as described in Section 5,

Both ATM and MLATM use a generic ACNO-MDP for planning, which we vary in our experiments. In particular,
we define a pessimistic, optimistic and average ACNO-MDP, as follows:

• Pessimistic (pes): the worst-case environment withinM assuming full observability, i.e.MRMDP.

• Average (avg): the environment where each transition probability is the average of the highest and lowest
valid probability inM. Its transition function is defined such that8:

∀s, s′, a : P(s′|s, a) = [pmin, pmax]→ P (s′|s, a) = (pmin + pmax)/2.

• Optimistic (opt): the best-case environment withinM assuming full observability. We define it in a similar
fashion as the robust transition function (Equations (3) and (4)), but we choose a transition function that
maximizes returns instead of minimizing them:

Popt(s
′|s, a) = arg max

p∈P(s′|s,a)
pVopt(s

′)−
∑

s′′∈S/s′

Popt(s
′′|s, a)Vopt(s

′′), s.t.
∑
s′

P (s′|s, a) = 1

with Vopt(s) = max
a∈A

R(s, a) + γ
∑
s′∈S

Popt(s
′|s, a)Vopt(s

′).

We will consider all three variants as MML for MLATM, giving us the algorithms MLATM-pes,MLATM-avg and
MLATM-opt. For ATM, we only consider the first two as planning environments, giving us ATM-pes and ATM-avg.

6.2 Experiments

For our algorithms, we distinguish two goals that we want to test for:

1. Robust performance: performance for the worst-case model within the uncertainty set.

2. General performance: performance for any model within the uncertainty set.

In this section, we first run experiments on two small toy environments to isolate the behavior of the algorithms related
to both goals. Next, we also consider both types of performances in the larger and more realistic drone environment.

6.2.1 Robust Performance: Considering Partial Observability

For the first research question, we run all algorithms on the a-b environment (Figure 9a) with pmin = 0, pmax =
1, R− = 0.8, and different measuring costs. As mentioned in Section 3.2.1, the worst-case transition function in this

8This transition function is not generally valid, but we can easily verify it is for all environments used here.
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Figure 12: Measuring behaviour in the a-b environment
against measuring cost c, for different algorithms. The
dotted line shows optimal measuring behavior.
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Figure 13: Measuring behaviour in the lucky-unlucky
environment against probability p−, for different algo-
rithms. The dotted line shows optimal measuring behav-
ior.
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environment is measurement-dependent. Thus, we use it to show the difference in measuring behavior between the
algorithms that do consider this dependency and those that do not.

As shown in Appendix A, we can algebraically show the measuring value (Equation (24)) is given by MVRATM = 0.35̄.

Figure 12 shows the measuring behaviour of the different algorithms on the a-b environment. As expected, we find
that both ATM-avg and ATM-pes are not able to correctly predict the transition function and thus show suboptimal
measuring behavior. More precisely, we find ATM-pes never measures since it predicts the worst-case transition
function is deterministic, while the ATM-avg uses average transition probabilities with no correlation to the worst case
at all. In contrast, RATM does use the correct worst-case transition function and thus shows optimal behavior.

As expected, the measurement-lenient policies do not follow optimal measuring behavior but instead keep making
measurements even after this becomes suboptimal. Surprisingly, however, the algorithms show inconsistent measuring
behavior, i.e. measure only for 50% of episodes, at certain measuring costs. To understand why this happens, we first
notice that when not measuring in the first step, the expected returns for taking action a or b in the second step are
identical. In such cases, we have implemented our algorithm to randomly picks one of the two actions to calculate
MV. However, in MML, these actions may not have the same value, which might give a higher measuring value
for one action than the other. In the pessimistic variant, for example, state p− is always maximized, meaning action
MLATM-pes will measure only if action b is chosen, and similarly for MLATM-opt and MLATM-avg. This causes
sporadic measuring, which explains the behavior seen in our results. If undesirable, this behavior could be prevented
by choosing control actions based onMML in case of ties.

From these results, we take the following findings:

Result 1. In small environments where robustness depends on the measuring action, RATM outperforms non-
robust algorithms, while our measurement-lenient algorithms perform extra (sub-optimal) measurements as ex-
pected.

6.2.2 General Performance: Effect of Uncertainty on Measuring

To test the measuring behavior of our algorithms, we run all algorithms on the lucky-unlucky environment (Figure 9b),
with R+ = −R− = 1, pmin = 0 and c = 0.2. As mentioned in Section 3.2.1, this environment has the counterintuitive
property that for large uncertainty, measuring becomes sub-optimal. More precisely, we can show algebraically that
for our particular setup, measuring is optimal for 0.2 ≤ pmin < 0.8 (details are given in Appendix A). Thus, we use
the environment to show the measuring behavior of our algorithms for such uncertainty sets.

Figure 9b shows the number of measurements taken by each algorithm for different (planning) values of pmin. We see
that apart from ATM-avg, start measuring after p− = 0.2, as is optimal, and both ATM-pes and RATM stop measuring
at the optimal value of p− = 0.8. However, all three measurement-lenient algorithms keep measuring after this point.
As in the a-b environment, MLATM-opt and MLATM-pes measure only when the algorithm chooses the sub-optimal
control action in their planning environment, while MLATM-avg always measures. From this, we take the following
finding:

Result 2. In small environments, measurement-leniency (partially) alleviates the problem of conservative mea-
suring as described in Section 3.2.2 by making more measurements than optimal.

6.2.3 Robust Performance: Drone Environment

To test the robust performance on a more realistic environment, we run all algorithms on our custom drone envi-
ronment, as defined in Section 3.3. We add model uncertainty with the use of the confidence MDP framework
(Section 2.2), which means our uncertainty is parametrized by the confidence level α. We recall that intuitively, a
confidence level α means the uncertainty set allows any probability to be at most a factor 1

α larger than for the base
transition function.

Although we would ideally test our algorithms on a fully adversarial environment, in practice obtaining such an
environment is computationally intractable. For this reason, we instead evaluate our algorithms on the worst-case MDP
variants of these environments, i.e. the environments with a worst-case transition function assuming full observability.
This means that measurement-dependent worst-case transitions (such as in the a-b environment) never occur, and
ATM-pes should give optimal performance.

Figure 14 shows the scalarized and non-scalarized returns of the different algorithms at different confidence levels. As
expected, we see in Figure 14a that ATM-pes performs slightly better than all other algorithms on average. However,
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Figure 14: Scalarized and non-scalarized return in the drone environment, with c = 0.05, for different algorithms at
different uncertainties. Uncertainty is parametrized by confidence levels α and decreases left-to-right. Lines show the
average of 100 runs, and shaded areas show 95% confidence intervals.

27



Active Measuring in Uncertain Environments MERLIJN KRALE

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α (real)

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Sc
al

ar
iz

ed
re

tu
rn

ATM-avg
ATM-pes
RATM

MLATM-pes
MLATM-avg
MLATM-opt

(a) Average scalarized returns.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α (real)

0.0

0.2

0.4

0.6

0.8

1.0

N
on

-s
ca

la
ri

ze
d

re
tu

rn

ATM-avg
ATM-pes
RATM

MLATM-pes
MLATM-avg
MLATM-opt

(b) Average non-scalarized returns.

Figure 15: Scalarized and non-scalarized return in the drone environment, with c = 0.05, for different algorithms. The
algorithms plan with uncertainty parametrized by αp = 0.5, but dynamics are in reality given by a worst-case MDP
environment parametrized by α. Thus, real uncertainty decreases from left to right, while planned uncertainty stays
constant. Lines show the average of 100 runs, and shaded areas show 95% confidence intervals.

the difference with the robust and measurement-lenient algorithms is small, particularly for larger confidence levels.
In contrast, ATM-avg performs worse than all other algorithms for all confidence levels.

Interestingly, Figure 14b shows that the (control) robust algorithms do significantly outperform both baselines in terms
of non-scalarized returns. This suggests that these algorithms take more measurements than the baselines but are able
to use these measurements to reach the goal state more often. This difference is not relevant in settings where the
scalarized return is the only relevant metric to optimize but could be relevant in others. We summarize this as follows:

Result 3. In large RMDP environments, the u(c)ATM algorithms outperform our non-robust baseline and out-
perform both baselines in terms of non-scalarized returns.

6.2.4 General Performance: Drone Environment

To test the generalisability on a large environment, we re-run all algorithms on the drone environment (Section 3.3) but
make the algorithms plan on a different algorithm than the one they are deployed on. More precisely, the algorithms
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plan on an environment with uncertainty parametrized by αp = 0.5, while we deploy the algorithms on the environ-
ment with α ∈ [0.3, 1]. This way, we simulate the performance of our algorithm in settings where the uncertainty of a
real environment is over- or underapproximated in its model.

Figure 15 shows both scalarized and non-scalarized returns of the different algorithms. As for robust performance,
we find our algorithms outperform ATM-avg, perform on par with the ATM-pes, and outperform both in terms of
non-scalarized returns.

Surprisingly, we do not find a significant difference between the robust and measurement-lenient algorithms, even for
large mismatches between the real and planning uncertainty. We can explain this finding by noting that the worst-
case dynamics of the drone environment will generally increase the probabilities of large but unlikely perturbations.
Since these probabilities are small to begin with, these probabilities stay relatively small even for the (relatively
large) uncertainty considered here. In other words, this particular environment does not exhibit the property out-
lined in Observation 2, meaning the robust algorithm makes more measurements for higher uncertainties already, and
measurement-lenientness has little to no effect on measuring behavior.

Result 4. In larger RMDP environments, the findings of Result 3 extend to settings where the uncertainty
is incorrectly specified. For the tested environment, measurement-lenientness does not lead to better general
performance.
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7 Discussion

In this section, we discuss a number of limitations of the present work:

uACNO-MDPs have strong assumptions on measurement actions: Like generic ACNO-MDPs, uACNO-MDPs
assume measurements are both complete and noiseless. However, most realistic environments have either partial mea-
surements (such as inspections on only certain parts of the system), noisy measurements (such as imperfect sensors),
or both. Thus, the methods proposed in this thesis would need to be generalized to incorporate these properties before
they could be used for real-life applications.

Scalability is limited by computations of PR: As explained in Section 4, the uATM algorithm requires online
computations of PR (via Equation (18)) at each step. These computations are expensive since they require solving a
non-convex optimization problem. Moreover, although the problem size does not explicitly scale with the size of the
environment, it does scale with both the number of states with a non-zero occupancy probability and the number of
state-action pairs, and the number of computations increases with the length of an episode. Combining these factors,
this computation is the main computational bottleneck of the algorithm and prevents the algorithm to be used in
environments larger than the ones used here. Future research could thus focus on finding efficient but accurate ways
of approximating this function.

The testing environment is not fully adversarial: For the drone environment, we were not able to run the eval-
uation using the real robust transition function but instead approximated this with the robust transition function of
the underlying uMDP. The reason for this is that finding the real robust transition function is intractably expensive,
given it is belief-dependent. As far as we are aware, no prior work explicitly computes robust transition functions of
uPOMDP, and works that compute them for policy computation [Osogami, 2015, Rasouli and Saghafian, 2018] are
not tractable for the environment used here. We considered approximating the robust transition function in parallel
with our algorithm and somehow incorporate this, but felt this was outside the scope of this thesis 9.

8Moreover, we have no reason to believe such a method would converge to the real robust transition function.
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8 Conclusion

In this thesis, we define uACNO-MDPs as a framework to represent active measure environments with model uncer-
tainty and analyze a number of properties of this framework. Next, we propose a variant on the act-then-measure
heuristic of our previous work for uACNO-MDPs. We show that this heuristic allows for a tractable policy compu-
tation method and that following the heuristic has only a bounded effect on the expected returns. Next, we formally
define measurement leniency as a way of categorizing policies that take more measurements than optimal but are oth-
erwise fully robust, and show proof performance regret of following such policies is bounded. Lastly, we analyze
both a fully robust and a number of measurement-lenient variants of our proposed method. We show their behavior
follows theoretical expectations in a number of toy environments and compare performance against a number of naive
baselines in a larger custom environment.

8.1 Future Research

We highlight a number of interesting directions for future research:

Generalisations to other active measure environments: As mentioned in the discussion, (u)ACNO-MDPs make
the strong assumptions that measurements are complete and noiseless, which is often not valid in practice. Future
research could define a more generic active measure framework with weaker assumptions on measurements and try
to solve these in a similar fashion as (u)ACNO-MDPs. We note that the act-then-measure heuristic might prove even
more useful in environments with multiple measurement actions since separating the decision-making process between
control- and measuring actions would have a bigger effect.

The effect ofMML: Although we have tested a number of choices ofMML in our experiments, the result of this
choice in realistic environments is not clear. Moreover, many different choices of MML could be considered. In
particular, one might consider constructing an environment that explicitly tries to maximize the number of additional
measurements used, for example, by maximizing the measuring cost for future states. However, it is not trivial to
calculate the transition function of such an environment, nor is it clear how such an environment would compare to
the ones tested in this thesis.

Applying partial robustness in other contexts: The concept of measurement leniency, as defined in this thesis, is
very specific to active measure environments. However, the idea of partial robustness, i.e. being fully robust in only
a part of your decision-making process, might be applicable more broadly. For example, a robot might want to take
actions related to certain expensive actuators robustly to prevent them from breaking, while actions unrelated to these
parts do not require this extra care. For such cases, it could be explored if a partially robust policy could be defined
that is less conservative overall but still has safety guarantees

Model-based reinforcement learning for ACNO-MDPs: In model-based reinforcement learning (RL), agents do
not know the dynamics of the environment they are interacting with but try to learn these dynamics on the fly. In this
process, agents need to take into account the uncertainty in their current model approximation. For fully observable
settings, one known method is to express the environment as an interval MDP, where intervals get updated dynamically
according to the observations made [Suilen et al., 2022]. Future research could explore how such a method could be
used for reinforcement learning in ACNO-MDPs. This would require methods for both planning in uACNO-MDPs,
as well as for updating intervals according to the history thus far. The algorithms described in this thesis could be used
for the former requirement, where we particularly note that measurement-lenient policies could be used to incentivize
exploratory measurements in early episodes.
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Figure 16: Expected returns for the optimal policy of the lucky-unlucky environment against p−, for measuring cost
s = 0.2. Colors represent different strategies.

A Optimal Behavior in example environments

Here, we explain and analyze optimal measuring behavior in the example environments mentioned in Section 3.

The a-b environment

To find the optimal policy for this environment, we first notice that in s0, only one action is permitted, and measuring
in the second step is never optimal. Thus, we only need to analyze the returns for measuring and not measuring in s0
for each possible action in the second step. We show our analysis for pmin = 0 and pmax = 1, and note other probability
intervals can be analyzed analogously.

When measuring, we notice that s+ has a higher expected return than s−. Thus, in this case, the worst-case transi-
tion function deterministically brings us to s−, meaning Q(s0, ⟨a, 0⟩) = R−. When not measuring, the worst-case
transition function should be such that the expected value for actions a and b is equal. These values are given by
p−R− and 1 − p− respectively, meaning the worst-case transition probability is given by p− = 1/(1 + R−) and the
expected return is given by Q(s0, ⟨a, 1⟩) = R−/(1 + R−). Combining the two expected returns, we find measuring
value is given by MVRATM = R−(1− 1

1+R−
)− c. For R− = 0.8 (as used in Section 6), we find p− = 0.56̄ when not

measuring, giving a measuring value of MVRATM = 0.35̄.

The lucky-unlucky environment

As for the a-b environment, we note the optimal policy for this environment never measures in the second step,
meaning expected returns only depend on the measurement action in the first step and the control action in the second.
Moreover, the expected returns for s− are strictly lower than those of s+, meaning the worst-case environment for any
p is simply given by the ACNO-MDP with p− = pmax. Depending on pmax, then, there are three optimal strategies for
this environment. If pmax is sufficiently large or small, the state uncertainty is small, and measuring is not worth the
cost. In these cases, we get strategies that never measure and take only action a or b, which lead to expected returns
of r = p+R+ + p−R− and r = 0, respectively. Another strategy is to always measure when transitioning to s+ or s−
and decide the next action based on our observation: take action a in s+, and b in s− This yields an expected return of
r = p+R+ − c. An optimal policy, then, simply chooses the strategy with the highest return according to pmax and c.
For c = 0.2, Figure 16 shows the returns of this policy for different probabilities pmax.
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